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ABSTRACT

Time-synchronous beam search has successfully been
employed in the Philips continuous-speech recognizer
for several years now, handling a vocabulary of 20 000
words and more. We have now improved the search
procedure with two robust pruning methods that drasti-
cally reduce both average and peak scarch effort.

1. INTRODUCTION

In the Philips' research prototype for large-vocabulary
continuous-speech recognition, the time-synchronous
beam search for the most likely word sequence ac-
counts for the lion's share of memory demand and for a
large part of computation. This paper describes two
methods which have proven to reduce both peak and
average size of the active search space and to be more
robust than our standard pruning method.

All investigations are within the context of our rec-
ognizer which is described elsewhere in enough detail
({7, 91) and which can briefly be characterized as fol-
lows: It is based on the statistical approach, is pho-
neme-based and uses Hidden Markov models (HMMs)
consistently with the Viterbi approximation, with non-
tied continuous mixture densities, We use trigram and
(typically) bigram language models. While the system
has been used under various conditions up to 45 000
words (with the American English Wall Street Journal
task {9]), the experiments reported here refer to the
recognition of German real-life dictations [9] on analog
desk-top equipment with a vocabulary of 15 000 words.

2. THE BASELINE SEARCH PROCEDURE

Before we explain the new methods, let us shortly re-
view and comment on the search procedures currently
used in our system [3].

Nomenclature. A state in the search space at a certain
time is called point or grid point. As a point during

search contains information about a specific partial
sentence hypothesis, the terms point, grid point and
hypothesis are used interchangeably.

Time-Synchronous Breadth-First Search. Search proc-
esses one obseryation (centisecond frame) after the
other. All active hypotheses refer o the same input
which facilitates the comparison of hypotheses. [6]
Data-Driven Beam Search. At each time frame, only
hypotheses with a score relatively closc 10 the best hy-
pothesis are considered further. The beam width is de-
fined by a pre-defined "pruning threshold". [6]

Tree Organizatic:i. In contrast to linear search, where
each HMM state belongs to exactly one word, we use a
tree organization that takes advantage of the fact that
many words share the same initial phoneme se-
quence [5]. :

Forest Search. In tine-synchronous beam search, all
knowledge sources are expanded ("multiplied out") into
one network. In particular, there are separate tree cop-
ies due to the language model constraints. [5]

Phoneme Look-Ahead. A look-ahead six frames ahead of
the current frame further reduces the search space [2, 5].

Language Model Pruning. An additional reduction is
achieved with an additional pruning step only regard-
ing word ending states.

Other. The construction of a word graph or lattice for
rescoring with a higher-order LM [1, 4] or for speech
understanding [8] is not considered here.

Search Errors (Pruning Errors). If, due to non-exhaus-
tive search, the scarch procedure fails to find the opti-
mal state sequence - optimal with respect to the knowl-
edge sources, not necessarily associated with the spo-
ken word sequence - this is called a search error. As an
alternative to directly determining search errors, we di-
rectly observed the word-crror rate: If the errors change
in connection with a search space reduction, a scarch
error has occurrcd.
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3. HISTOGRAM PRUNING

In our off-line recognition experiments, we frequently
observed that the peak search effort exceeded the aver-
age effort by almost two orders of magnitude (Table 1).
This behaviour is typically observed during non-speech
'sounds and hesitations.

Table 1: Maximal versus average number of grid points
per centisecond before pruning.

Speaker M-60 M-61 M-64
Maximal | 1287000 717000 3376000
Average 20000 20000 44 000
Ratio max./av. 64 36 77

Table 2: Maximal number of grid points per centisec-

and a limit of 100 000 points per centisecond, there are
16 000 points active on average, 176 800 is the maxi-
mal value before and, by construction, 100 000 the
maximal value after pruning. M-64 was chosen as a
particularly bad speaker.

The interesting question is how many additional
search errors are ‘introduced by this new pruning
scheme. Quite astonishingly, we could reduce the up-
per limit on the points quite drastically without detect-
ing search errors. Table 4 and an inspection of the
global sentence scores indicate that search errors occur
and dcteriorate performance around and below 25 000
points maximum. For the subsequent experiments,
we thus fixed 30 000 points as upper limit.

Another  nice

Table 4: Word-error rate in %. feature of histo-

ond before pruning for three speakers. Upper | M-60] M-61 | M-64 gram pruning is ro-
Iy 0 Limit bustness. If pruning

Upper Limit - M-6 M-61 M-64 imi is too tight, pruning
10 000 18 000 15 800 19 200 10000|. 24.8] 36.7| 25.2 errors are likely to

25000 51 300 50 600 45 000 25000 11.5} 13.8| 22.8 occur. If we com-

50 000 96 000 91 000 83100 50000 11.6] 13.7| 22.1 pare the relation

100 000 176 800 162 900 166 600 100000| 11.6| 13.7] 21.8 between the num-
150000| 246200 231300| 227900 150000 11.6| 13.7] 218| Der of processed

- ' ' ' points and errors

200 000 320100 289 600 292 500 200000{ 11.6} 13.7| 21.6 due to pruning both

none| 1287600{ 717000 3375500 nonej 11.6] 137 214 for standard beam

A straightforward approach to the problem1 is to in-
troduce an additional pre-specified upper limit on the
number of active points (per frame). With a histogram
on the hypotheses scores? of a specific time frame, the
pruning threshold is decreased, if necessary, to keep the
number of active
hypotheses below
this limit. Be-
tween expansion
of hypotheses of
M-64 | 1he preceding

Table 3: Average number of
grid points per centisecond
before pruning.

Upper M-60 | M-61

Limit

10000
25000
50 000
100 000
150 000
200 000

none

1200
12 000
14 000
16 000
17 000
19 000
20 000

1100
13 000
17 000
20000
20000
21 000
20 000

8300
16 000
22000
28000
30000
32000
44 000

time frame and
pruning of the set
of expanded hy-
potheses, the
number of active
points may well
exceed the given
limit. Tables 2
and 3 show the
dependence  of

search effort on the given limit. E. g. for speaker M-60

1 Gerhard Bachmayer (Philips Dictation Systems,

Vienna) indicated the problem to us.

2 In this paper, negative log probabilities that occur
during recognition are called "scores".
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pruning and (bcam pruning with) histogram pruning,
the latter compares very favourably: E. g. for a certain
speaker (M-72), reducing the averag. search effort of
standard pruning from 20 000 to 3 000 points more
than doubles the error rate from 11.1% to 36.9%, while
histogram pruni'¢; with 3 000 points remains with
14.1% (a quarter more) relatively stable.

We conclude that the peaks of about 1 million
points per frame are drastically reduced by histogram
pruning to only 30 000, the average number by more
than 30%, without deterioration of the error rate. In
addition, the degradation due to incorrectly chosen pa-
rameters is more graceful than with the conventional
beam pruning.

40000
35000
30000
25000
20000
15000
10000

5000

Bpotential states of one tree
Blactive states

0 Ina
1 3 8§ 7 911 131517192]23252729'31

Fig. 1: Distribution of siates over generations
(corresponding to phoneme positions) of a tree:
Comparison of total search effort using (histogram)
pruning with potential search space i only one tree.
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Fig. 1 gives an impression of how the active points
are distributed. Compared to the potential search space,
which is a multiple (here 15 000) of the number of
states in one tree, the active search is more concen-
trated on the first generations (i. e. the word begin-
nings). Typically 10-15 trees are active on the average.

4. LANGUAGE-MODEL LOOK-AHEAD:

SMEARING LM SCORES OVER THE TREE

4.1 Motivation

The efficient method of forest search (or tree search;
cf. section 2) basically consists of structuring the vo-
cabulary in a phonetic tree and introducing tree copies
due to the language model constraints. The word iden-
tities are only known at the word endings rather than at
the word beginnings in linear search, such that the LM
(language model) knowledge is employed with one
word delay. Instead, it should be incorporated as early
as possible.

Another deficiency lies in the fact that the scores of
hypotheses change drastically when a word ending is
encountered because the LM scores are added there. In
particular, the pruning threshold has to exceed largest
LM score. If some of the LM scores are close to the
pruning threshold, pruning errors are likely to occur. If,
on the other hand, a word ends with a good score,
many useless word start hypotheses are being examined
during silence after a word.

generations of cacs
1 2 3 4 5

\

silence arc N -
nodes of word endings

Fig. 2: Sample tree for illustration of nomenclature.

4.2 Description of LM Look-Ahead

The basic idea of our method is to incorporate the LM
scores as early as possible: In each portion of a pho-
netic tree, an estimate of the language model (LM)
scores of all possible word continuations is used for a
modified pruning strategy. We describe the basic al-
gorithm first and later-on simplified variants that can
be more efficiently implemented.

Nomenclature: Every tree consists of nodes and
arcs. Every arc corresponds to a phoneme copy or a se-
quence of typically six HMM states. Leaves of the tree
always are word ending nodes, but word ending nodes
also occur within the tree.

For every tree copy, representing the LM left con-
text, and every word ending node, there is a LM score.
The algorithm modifies the usual time synchronous
beam search as follows:

Pre- - bef o

For every tree and every node n do:
calculate and store MinLMScToExpect (n)
:= min {LM score of all nodes n’' that
can be reached from n};

end of loop;

For every state being expanded:

if a state is expanded from a predeces-
sor arc ending with node n' to an arc
ending with node n (n'#n), add MinLMSc-
ToExpect (n) -MinLMScToExpect.(n') to the
score;

if a word ending is reached in node n,
subtract MinLMScToExpect(n) while add-
ing the usual LM-score.

end of loop:

§36-5.3

It should be noted that in a word-ending node, Min-
LMScToExpect can be smaller than the LM score.

As the method described above requires either a
large amount of storage (or computation, if the values
are calculated on-the-fly during recognition), several
simplifications should be considered (we assume an n-
gram model with n>1). E. g., in the subsequent ex-
periments, we only use the unigram LM probablili-
ties for the LM look-ahead ("unigram approxima-
tion™), thus reducing the storage (or computation) ef-
fort. Various other simplifications are possible.

Rather than emphasizing the look-ahead, the
method can also be viewed as smearing the LM scores
over the tree rather than concentrating them in the
word endings.

4.3 Experimental Results

We used the language-model look-ahead derived from
a unigram model; control experiments with more so-
phisticated set-ups showed only slightly better results.
In addition to the histogram pruning method, the aver-
age search space size is reduced by more than 70%,
e.g. from 20 000 to 5 000 active hypotheses per frame.
Table 5 and Fig. 3 show the search effort broken down
into arc generations: An arc in generation g
corresponds to a phoneme in position g. They indicate
that the search space is reduced and more concentrated
in the word beginnings. Here, the same small amount

"of search errors was allowed both without and with LM .
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look-ahead. The
improved pruning
is partly due to the
modified relation

Table 5: Effect of LM look-
ahead on the number of active
rid points in the generations.

Gen- | NoLM- | LM- | Gain between  within-
era- LA LA word  phonemes
tion and silence.
1 166 2541 0.65 The robustness
2 1241 657| 1.89| of this method is
3 4039|  665| 6o7| Quitc impressive,
Again for speaker
4 3709 4261 8.70 M-72 while
5 1360 214| 6.35 reducing the
6 390 97| 4.02| average search
7 137 44| 31| space of stanfdard
pruning rom
8 3L 200 274 20 000 to 3000
9 22 10/ 22] points more than
10 10 5 21 doubles the error
| rate of 11.1%,
there is no
Total: 11 141 2406| 4.63 significant change

with LM look-
ahead for 3 000 points and even for a reduction to 900
points only a slight increase to 12.2%!
The last Fig. 4 shows the search space size for the
standard and the new methods over time.

Ostandard pruning
LM look-ahead

8 9 1011 12 13

Fig. 3: Distribution of search effort in different genera-
tions (grid points in the 1st up to 13th phoneme) for
baseline system and LM look-ahead. Cf. Table S.

5. SUMMARY

Histogram pruning and language-model look-ahead
pruning improve large-vocabulary search, significantly
reducing peak and average search space size and thus
both memory and computation. At the same time, they
are more robust than standard beam pruning.
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Fig. 4: Search space size over time {in centisecond
frames) for baseline method (dashed), histogram prun-
ing (solid line) and LM look-ahead (dotted).
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